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Consider a heat conducting fluid that is stationary and in a state of equilibrium.
When this fluid is heated from the bottom, the fluid’s tendency is to remain stationary
while conducting the heat from the bottom toward the top. If one continues to heat the
bottom, the temperature difference between the top and the bottom eventually reaches
a critical value above which the fluid can no longer support the equilibrium state and
convection begins. This phenomenon, known as the Rayleigh-Bénard instability, is the
subject of this note.

1 The Basic Solution

We begin the mathematical study of this phenomenon by considering the governing
equations of fluid dynamics in a domain D defined by

D ={(z,y,2)|0 < z <d}. (1)

The fluid therefore is confined between two slabs (at z = 0 and z = d) and otherwise
extends to infinity. The following three sets of equations are derived from the principles
of conservation of mass, linear momentum and energy, respectively:

pi +div (pu) =0,
p(us+u-Vu) =—-Vp+ pAu— pgk, (2)
pep(0r +u-VO) = A6,

where u = (u, v, w) denotes the velocity, p the density, 6 the temperature, p the pressure,
p the kinematic viscosity, g the gravitational constant, ¢, the specific heat, and A the
thermal conductivity of the fluid. We have assumed the Fourier law, that heat flux
q = —AV0, in expressing the heat flux’s dependence on temperature.

The term pgk takes into account the force associated with the weight of the fluid.
This term, which measures the bouyancy in the flow, plays a crucial role in the stability
analysis of the flow since p changes with temperature, thus introducing a rather complex
forcing term on the right-side of (2b).

Equations (2) are augmented by the boundary conditions

w(xayao) =0, w(xayad) =0, (3)
Q(Oaxvy) = 00) e(d,.’l,‘,y) = edv



where 6 is the (controlled) temperature at the bottom of the slab and 6, is the corre-
sponding temperature at z = d. Finally, we complete the mathematical formulation of
the flow by assuming the initial data

u(z,y,z,0) =f(zr,y,2), 6(z,y,2,0) =g(z,y, 2). (4)

The key idea in the Boussinesq approximation (see Drazin and Reid, ”Hydrody-
namic Stability”, 1981, Cambridge University Press, pp. 32 — 52) is to assume that the
density deviations are only due to temperature variations. More important, the density
variations only manifest themselves in the bouyancy term in (22). We therefore assume
that p has the from

p = po(1+ affo — 0)), (5)

where pg and a are nonnegative constants. So except for the term pgk, we replace p by
po whereever p appears in (2). The latter equations now reduce to

divu =0,
po(ug+u-Vu) =—Vp+pAu— po(1l+ (b — 0))gk, (6)
0; +u-V8 = kA6,
where k = cp’))g.

Our stability analysis begins with identifying the basic solution of (6) which satisfy
(3) and represents the equilibrium state of flow where the fluid is standing still and heat
transfer is solely due to heat conduction. This solution (u°,8°,p°) is

u =o,
90 _ 90 o Gogodz’ (7)

606
p° =po—gpo(z+ a(%idd)?ﬂ)

)
where pq is the fluid pressure at z = 0.

Problem 1: Show that (7) satisfy the equations in (6) and the boundary conditions

(3).

2 Linearization about the Basic Solution

Our goal in this note is to understand how the perturbations of the basic solution defined
in (7) behave as solutions of the initial-boundary value problem (6), (3) and (4). To
that end we consider the solution {u,8,p} of (6), (3) and (4) which are related to (7)
through the relations

u =¢€U,

0 =0p—Bz+ €O, (8)

P =po—gpo(z+2L22) +eP,

where 8 = %i and € is a small real number. The triple {U, ©, P} represent the

perturbations away from the basic solution (7). Since {u,#,p} are solutions of the full



problem they must satisfy (6). We now substitute (8) into (6) and retain only terms of
order € to get

divU =0,
au 1
%—? = PBug + KAO.

Problem 2: Show that the perturbation equations in (9) follow directly from sub-
stitution of (8) into (6).
3 Non-dimensionalization

Next we non-dimensionalize the dependent and independent variables in (9) according
to the following set of relations:

x =%
t = g":zt,

i ={U, (10)
o =m?

p " pok

Problem 3: Show that the barred quantities in (10) are all non-dimensional.
Application of the chain rule of differentiation transforms each equation in (9) to its
non-dimensional equivalent. For instance, the first equation, V - U = 0, takes the form

0 =V-U
oUr | OUs , OUs
Ba:]a—l_ Ba:26+ Bz%
= l(ﬂ 49U ﬂ)
d Bg]_ 35_32 Bga
— Kk (OUL , 9Uz , 9Us
— d2 (_3:1_31_+ dT2 + 31_:3>
—2V.U.

Thus the first equation in (9) remains invariant under the change of coordinates (10),
giving us
V-U=0.
The remiainng equations in (9) are treated similarly.
Problem 4: Show that the dimensional equations in (9) reduce to the following
non-dimensional equations:

vV-U =0,
s M a
% = —j—;;f RY6 + YA,
% =3+ Ags,
where R, called the Rayleigh number, is
d4
R = 9954 (12)
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We also define the Prandtl number o as
v
== 1
o=" (13)

Problem 5: complete the computations that lead to (11).
With the new definitions of R and ¢ in hand the equations (11) on the following
form (we drop the bars from this point on):

V-U =0,
%—‘; — —Vp + Robk + oAu, (14)
9 =uz+ A8.

The following identities will be used in reducing (14).
Problem 6: Let u, p and 6 be smooth functions. Then the following identities hold:

1. VxVp=0.
2. V x (fk) = VO x k.

3. Vx(Vx(6k)) = —Ak+V80,. In particular, the third component of Vx (V x(6k)) =
_(9&'1&01 + 9-732502)'

4. VxVxu=—-Au+V(V-u).

Note that the last identity implies that VXV xu = —Au when the flow is incompressible.
With this in mind we apply the operator V x Vx to the second equation in (14), apply
the remaining identities in Problem 6 and get

9 2
a(Au;:,) = RoA10 + cA%us
where Aju = Uz, gz, + Uz,z,. We now rewrite the above equation slightly and group it
with the last equation in (14):

DA A2V —

(gtA oA )U3 RO‘A10, (15)
We apply the operator (% —d) to the first equation in (15) and use the second equation
in (15) to get a single equation for us:

0 0

—_ R — 2 =
ot A)(BtA oA )’u,3 RO’A1U3. (16)

Problem 7: Show that 6 satisfies the same differential equation as ug does.

(



4 Separation of Variables

We now seek solutions to (16) and the last equation in (14) in the form

ug = e f(z,y)w(z), 6=e"f(z,y)0(z) (17)
where w satisfies the rigid boundary conditions
w(0) = w(1) =0. (18)
Substituting (??) into the last equation in (14) leads to
sf0 = fw+0A1f + f6",
which after dividng by f@ and recalling that f depends only on z and y and 6 only on
z we conclude that
Af o g" w 2

f —a-, ?—I-E—s:a

where a2 is the eigenvlaue of this problem. The above equations are equivalent to
Aif+d%f =0, 6" +w — s0 = a26. (19)
Next we substutute (17) into (16) to get

d*w d*w d*w
2,@W o DY 028 W 4
s f(dz2 a’w)—s(o+ )f(dz4 @ +a*w)+tof(

d®w o dw Lo 9
7.6 —3a 1A +3a 20 w) = —Roa” fw.

we divide the above equation by o f to get

6 4 2 2 2.2
(271;)—(3(12—%3(1—}—%))%4—(3(14—1—2(123(1—%%)—l—%)%—i—(Raz—aﬁ—a‘ls(H—%)—%)w =0.
(20)
Since (20) is linear with constant coefficients and w must satisfy zero boundary condi-
tions, we seek solutions of this equation of the form w(z) = sinnnz leaving us with the
polynomial equation

2 1 (1252

1 1
—n67r6—(3a2+s(1+—))n47r4—(3a4—|—2a2s(1+—)—I—S—)n27r2+(Ra2—a6—a4s(1—|——)——) =0.
o o’ o o o
Additionally, we note that the solution (17) will be marginally stable when s = 0 so
we will s = 0 in the above equation to determine a relationship between R and a that

would lead to this limiting case. We get
—nb7® — 3aZnin* — 3a*n?n? + Ra® — b,

from which we obtain the relation



The function R in (21) attains its minimum when a has the critical value

a= 72 (22)

Substituting (22) in (21) leads to the critical Rayleigh number

2Tnnt
R. =
¢ 4

(23)

at which marginal instability of the steady solution (7) occurs. When n = 1 the critical

Rayleigh number is % which occurs at a = % We have proved the following theorem.

Theorem: The basic solution (7) is linearly unstable as the solution of the fully
goBd*
kv

nonlinear system (6) if the Rayleigh number R, which is

277t
to -

is greater than or equal



